

Abstract—Real-time estimation/control of Partial

Differential Equation (PDE) systems, especially for large-scale

applications, generally involves high computational burdens. In

this paper, we propose a distributed computation scheme,

which can leverage available and otherwise idle computing

resources to cooperatively solve the high-dimensional

controller/estimator implementations for fine-grained

management of such PDE systems. Such a real-time distributed

computation scheme requires communication among the

computing resources which is subject to uncertainties due to

imperfections of the communication network. Given this

scenario, the proposed approach: 1) includes a modeling

framework in the controller/estimator implementation that

explicitly addresses network uncertainties, 2) uses a

diagonalization-based scheme where the approximated ODE

form is transformed into the diagonal form before

implementation in order to minimize the communication

requirement, and 3) includes a filtering solution to suppress the

effect of communication uncertainties. The proposed scheme is

illustrated via a real-time state estimation of individual battery

cells in vehicle battery packs using a network of vehicular

computing units. Simulation results are included to illustrate

the effectiveness of the scheme.

I. INTRODUCTION

Distributed Computing Systems (DCS) are becoming very

useful in several engineering applications. The concept of

DCS can be boiled down to cooperative execution of a

computational problem by a set of computing resources.

However, the execution process generally has some

limitations such as weak links with the central coordination,

communication constraints (communication bandwidth,

communication delays, unreliable communication link) etc

[1]. The advantage of DCSs lies in the reduction of

computation time for large-scale computations given that the

communication imperfections are taken care of [2]. In this

paper, we proposed a computation approach that can be

deployed over DCS for real-time estimation and control of

Partial Differential Equation (PDE) systems.

Several spatially distributed and large-scale systems can

be modeled by PDEs such as: fluid flow systems [3],

*Research supported by U.S. Department of Energy GATE Program.
S. Dey* is with the Department of Civil and Environmental Engineering,

University of California, Berkeley, CA 94720, USA. (*Corresponding

author; fax: 864-283-7208; e-mail: satadru86@berkeley.edu).
Y. Wang is with Dept. of Electrical and Computer Engineering ,

Clemson University, Clemson, SC 29634, USA (e-mail:

yongqiw@clemson.edu).
B. Ayalew is with the Applied Dynamics and Control Group, Dept. of

Automotive Engineering, Clemson University, Greenville, SC 29607, USA

(e-mail: beshah@clemson.edu).

manufacturing processes [4], large structures [5], etc.

Controller and estimator implementation for PDEs in real-

time hardware is often done in the Ordinary Differential

Equation (ODE) form [6]. Due to the inherent infinite-

dimensional nature of the PDEs, generally the dimension of

the ODE system that closely approximates the PDEs is very

high. Although several model reductions are available, such

reduced models may neglect critical modes of the system,

leading to control/observation spillover [7]. However, high-

dimensional ODE implementations that retain fine-grained

information need processors with high-end computational

specifications to solve the large matrix sums and products

needed at each iteration step. These specifications are

generally cost-prohibitive for real-time control/estimation

applications.. In this paper, we propose a potential solution

to this high computation requirement by exploiting a

distributed computation framework, which will essentially

reduce the computation time, so that the high-dimensional

controllers/estimators can actually meet hard real-time

constraints. We illustrate the proposed scheme in the context

of linear, parabolic, boundary controlled and boundary

measured PDEs.

In our problem, the objective is to solve a computation

task of high computational burden by partitioning the overall

computation tasks and distributing them over multiple

available computing resources. In the literature, few works

exist that try to exploit the distributed computing for offline

control design or analysis problems like optimization of

polynomials [8] and large-scale robust stability [9]. Here,

our proposed distributed computing approach addresses an

online or real-time computation problem. Note that, the

computational burden mentioned here arises from the high

dimension (in terms of number of states) of the

control/estimation model, not from the structural

complexities of the model (such as nonlinearities).

As there are communications among the computing

resources, the communication uncertainties may potentially

affect the performance of the controller or estimator

significantly. The finite difference discretization is one of

the natural and widely used forms in the implementation of

the PDEs. However, the communication requirement among

several computing resources could be high in such natural

discretization which in turn introduces significant

communication uncertainties in the controller/estimator. The

proposed distributed scheme minimizes the effect of such

uncertainties in three ways: 1) by using a diagonal form

(obtained by transforming the original natural finite

difference discretization form) that requires significantly less

A Distributed Computation Scheme for Real-time Control and

Estimation of PDEs

Satadru Dey, Yongqiang Wang, and Beshah Ayalew

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8682-1/$31.00 ©2016 AACC 1667

communication among the computing resources as

compared to the original natural discretization form, 2) by

considering an explicit model of network uncertainties in the

controller/estimator design phase to enhance the

performance and, 3) by including a filtering solution to

suppress the effect of network uncertainties. The proposed

scheme is illustrated on a state estimation problem of

individual battery cells in vehicular battery pack.

The paper is organized as follows. Section II provides the

problem formulation, discusses a computation scheme for

PDEs using the natural discretization via finite-difference

method and then proposes the diagonalization-based

distributed computation scheme. Section III discusses the

application of the proposed scheme for battery PDE state

estimation along with simulation studies in Section IV.

Section V summarizes the conclusion of the work.

II. DISTRIBUTED COMPUTATION SCHEME FOR PDES

A. Problem Formulation

Consider a linear, parabolic, boundary controlled and

boundary measured PDE as described below:

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
, 1 ≥ 𝑥 ≥ 0, 𝑡 ≥ 0

(1)

with the following boundary conditions:

𝑐(0, 𝑡) = 0,
𝜕𝑐(1, 𝑡)

𝜕𝑥
= 𝐾𝑢, 𝑡 ≥ 0

(2)

and measurement equation:

𝑦 = 𝑐(1, 𝑡), 𝑡 ≥ 0 (3)

where 𝑐 is some dependent variable which is a function of

both time 𝑡 ∈ [0,∞) and space 𝑥 ∈ [0,1], 𝐷 ∈ 𝑅+ and 𝐾 ∈
𝑅 are known scalar coefficients, 𝑢 ∈ 𝑅 is the scalar control

input acting on the boundary and 𝑦 ∈ 𝑅 is the boundary

measurement. Such PDEs have broad applications in

diffusion problems [10].

B. PDE Observer Computation Scheme via Natural Finite

Difference Discretization Form

The PDE described in (1)-(3) can be approximated by a

set of ODEs using the method of line technique where the

spatial derivatives are approximated using central finite

difference methods. The spatial domain is discretized in 𝑁

nodes [0, ∆, 2∆, … ,1] where ∆= 1/𝑁. Correspondingly, the

dependent variable 𝑐 is discretized into a set of variables

each of which corresponds to each node as [𝑐0, 𝑐1, … , 𝑐𝑁].
Then, the first and second order spatial derivatives are

approximated using finite central difference methods as:

𝜕𝑐𝑖

𝜕𝑥
≈

𝑐𝑖+1 − 𝑐𝑖−1

2∆

𝜕2𝑐𝑖

𝜕𝑥2
≈

𝑐𝑖+1 − 2𝑐𝑖 + 𝑐𝑖−1

∆2

(4)

Based on the discretization (4), the PDE is converted to a set

of ODEs as given below:

�̇�1 = −2𝑎𝑐1 + 𝑎𝑐2
�̇�𝑗 = 𝑎𝑐𝑗−1 − 2𝑎𝑐𝑗 + 𝑎𝑐𝑗+1

�̇�𝑁 = 2𝑎𝑐𝑁−1 − 2𝑎𝑐𝑁 + 2
𝐾

∆
𝑢

(5)

where 𝑗 = 2, . . , 𝑁 − 1 and 𝑎 = 𝐷/∆2. Now, using (5), the

ODE state-space model can be formed as below:

�̇� = 𝐴𝑋 + 𝐵𝑢
𝑌 = 𝐶𝑋

(6)

where 𝑋 = [𝑐1, … , 𝑐𝑁]𝑇 ∈ 𝑅𝑁 is the state vector , 𝑢 ∈ 𝑅 is

the control, 𝑌 ∈ 𝑅 is the boundary measurement, 𝐴 ∈ 𝑅𝑁×𝑁

is a system matrix, 𝐵 = [0,0, . . ,2𝐾/∆]𝑇 ∈ 𝑅𝑁×1, 𝐶 =
[0,0, . . ,1] ∈ 𝑅1×𝑁. The structure of the matrix is given as

follows:

𝐴 = 𝑎

[

−2 1 0 0 … 0 0 0
1 −2 1 0 … 0 0 0
0 1 −2 1 … 0 0 0
… … … … … … … …
0 0 0 0 … 1 −2 1
0 0 0 0 … 0 2 −2]

(7)

 Now, we seek to design an observer for estimating the

states of this reduced ODE system (6). The most common

form of the observer structure in estimation theory is the

copy of the system along with an output error injection term.

In context to our system (6), the observer structure can be

written as:

�̇̂� = 𝐴�̂� + 𝐵𝑢 + 𝐿�̃�

�̂� = 𝐶�̂�

(8)

where �̂� and �̂� are the estimated state vector and the

estimated output, �̃� = 𝑌 − �̂� is the output error and 𝐿 ∈

𝑅𝑁×1 is the observer gain vector to be designed.

Figure 1: Implementation schematic of the PDE observer using distributed

computing scheme via natural discretization (tri-diagonal form). The
measurement of boundary output and boundary control input is received by

processor m which is assigned the last partition of the computation.

Moreover, processor m is receiving the states from the other processors and
reconstructing the full-state vector.

When the dimension of system (8) is high, the

computational load for solving it becomes unacceptable for

many individual low-cost processors. Therefore, we consider

a scenario where we have 𝑚 number of computing nodes or

processors available to distribute the computation of the

observer dynamics (8). The natural way to allocate the

computation to the processors is to partition the overall

observer dynamics into 𝑚 chunks and assign each chunk to

one processor. The partitioned dynamics can be written as:

�̇̂�𝑖 = 𝐴𝑖�̂�𝑖 + 𝐴𝑖̅�̂� + 𝐵𝑖𝑢 + 𝐿𝑖�̃� (9)

1668

where 𝑖 = 1,… ,𝑚, �̂� = [�̂�1
𝑇 , �̂�2

𝑇 , … , �̂�𝑚
𝑇]𝑇, 𝐵 =

[𝐵1
𝑇 , 𝐵2

𝑇 , … , 𝐵𝑚
𝑇]𝑇, 𝐿 = [𝐿1

𝑇 , 𝐿2
𝑇 , … , 𝐿𝑚

𝑇]𝑇, 𝐴𝑖 is the i-th block

on the diagonal of matrix A, and 𝐴𝑖̅ is constructed by the

corresponding rows in matrix A after replacing 𝐴𝑖 elements

with 0. Essentially, the term 𝐴𝑖̅�̂� represents the interaction of

each partitioned block with their adjacent neighboring

blocks. This interaction is due to the tri-diagonal nature of

the original system matrix 𝐴. Moreover, note that 𝐵𝑖
𝑇 for 𝑖 =

1, . . , 𝑚 − 1 are zero vectors of appropriate dimensions due

to the boundary controlled nature of the PDE plant. The

implementation of this distributed computation structure is

shown in Fig. 1.

C. Modeling Communication Uncertainty

Note that, in the implementation structure in Fig. 1, the

processors are communicating among each other through

wired or wireless communication networks. Communication

networks can be highly unpredictable. Hidden terminal

problems may also exist, causing transmission collisions and

thus message losses in the networks [11]. In fact, for many

purposes (such as real-time control), it is sometimes

advantageous to discard old, non-transmitted messages when

a new message becomes available as the newer message is

fresher than non-transmitted old messages and is more

valuable for real-time applications. In memoryless channels,

message losses result in unreliable communication links with

a successful transmission rate 0 < 𝑝𝑖,𝑗 < 1. That is, with

probability 𝑝𝑖,𝑗, a message from processor i can be

successfully sent to processor j, and with probability 1 − 𝑝𝑖,𝑗

the message will be lost. If we represent the channel status

as a random variable 𝜃𝑖,𝑗 ∈ {0, 1}, then 𝑃{𝜃𝑖,𝑗 = 1} = 𝑝𝑖,𝑗.

Considering these network related uncertainties, the observer

dynamics can be written as:

�̇̂� = 𝜃𝑥𝐴�̂� + 𝐵𝑢 + 𝜃�̃�𝐿�̃�

�̂� = 𝐶�̂�

�̅� = 𝜃𝑓�̂�

(10)

where �̅� is the full state vector reconstructed at processor m

and 𝜃𝑥 , 𝜃�̃�, 𝜃𝑓 ∈ 𝑅𝑁×𝑁 are time-varying diagonal matrices

whose elements 𝜃𝑥,jj, 𝜃�̃�,jj and 𝜃𝑓,jj are stochastic and

𝜃𝑥,jj, 𝜃𝑓,jj, 𝜃�̃�,jj ∈ {0,1} where 𝑗 = 1, . . , 𝑁. These stochastic

elements represent the packet drops in communication.

Specifically, 𝜃𝑥 represents the packet loss in the

transmission of boundary nodes for each processor (as each

processor interacts with two other processors). Then, 𝜃�̃�

represents the packet loss in the transmission of output error

from processor m to all other processors. Finally, 𝜃𝑓

represents the packet loss in the transmission of the

partitioned states to processor m for reconstruction of the full

state-vector. Note that, the last chunk of the computation is

given to the processor which is receiving the measurement

information from the plant directly (refer to Fig. 1). This

assignment reduces the communication related uncertainties

in the 𝐵𝑢 term and the 𝐶�̂� term.

However, this particular distributed computation approach

requires exchanging observer state information (�̂�𝑖) between

processors (due to the presence of 𝐴𝑖̅�̂� term in (9)), which

might be problematic due to two reasons:

1) At each time step k, the calculation of ODE in one

processor depends on the observer state information �̂�𝑖 from

neighboring processors. If the calculation of ODEs in

different processors are not in pace, which is highly possible

due to differences in computational power and conditions in

different processors, then one processor conducting the k-th

step ODE iteration needs to wait until neighboring

processors finish the k-th step calculation and pass results to

it. In other words, calculation paces between different

processors need to be precisely synchronized, which is not

an easy job, if at all possible.

2) State information needs to be exchanged every ODE

iteration step which means substantial communication

overhead.

Therefore, the exchange of estimated state information �̂�𝑖

should be minimized and even prevented via alternative

computation schemes. Next we propose a new approach

which can prevent exchanging the state information.

D. PDE Observer Computation Scheme via Diagonal Form

Here, we propose to systematically explore the

characteristics of the dynamical systems under consideration

and decompose the system according to the internal coupling

between the states. Given that the internal coupling between

states is embedded in the original system matrix 𝐴, it can be

revealed by analyzing the structure of matrix 𝐴. We propose

to use following real eigen-decomposition of system matrix

𝐴 to probe the structure of internal coupling:

Step 1: Diagonalize 𝐴 matrix with 𝐴 = 𝑃−1Λ𝑃 with

similarity transformation matrix 𝑃 which is invertible, where

Λ is the real Jordan form [22] having a block diagonal form

𝛬 = diag{𝛬1, 𝛬2, …, 𝛬𝑚}.

Step 2: The new transformed system dynamics become:

�̇� = Λ𝑍 + �̅�𝑢

𝑌 = 𝐶̅𝑍

(11)

where 𝑍 = 𝑃𝑋, �̅� = 𝑃𝐵 and 𝐶̅ = 𝐶𝑃−1.

Step 3: The observer structure can be chosen as:

�̇̂� = Λ�̂� + �̅�𝑢 + 𝐿𝑍�̃�

�̂� = 𝐶̅�̂�

(12)

where �̂� and �̂� are the estimated state vector and the

estimated output, �̃� is the output error and 𝐿𝑍 ∈ 𝑅𝑁×1 is the

observer gain vector to be designed.

Step 4: Now, considering the existence of 𝑚 processors, the

observer dynamics (12) can be decomposed into 𝑚

independent subsystems as given below:

�̇�1 = Λ1𝑍1 + �̅�1𝑢 + 𝐿𝑍1�̃�

 �̇�2 = Λ2𝑍2 + �̅�2𝑢 + 𝐿𝑍2�̃�

 ⋮

 �̇�𝑚 = Λ𝑚𝑍𝑚 + �̅�𝑚𝑢 + 𝐿𝑍𝑚�̃�

(13)

where 𝑖 = 1, . . 𝑚, �̅�𝑖 and 𝐿𝑍𝑖 is the corresponding i-th block

in �̅� and 𝐿𝑍.

1669

Step 5: Distribute the 𝑚 independent subsystems in (13) to

𝑚 available processors. Each subsystem 𝑍𝑖 cannot be

separated and must be allocated to one processor. Since

subsystems are completely decoupled from each other, there

is no need to exchange any estimated state information �̂�𝑖

between processors. All estimated states �̂�1, �̂�2, … , �̂�𝑚 are

transmitted to one particular processor where the original

state will be reconstructed as �̂� = 𝑃−1�̂�.

The distributed computing scheme for this diagonalized

discretization is shown in Fig. 2.

Figure 2: Implementation schematic of the PDE observer using distributed

computing scheme via diagonal form. The measurement of boundary output
and boundary control input is received by processor m which is assigned the

last partition of the computation. Moreover, processor m is receiving the

states from the other processors and reconstructing the full state vector.
Now, considering the network induced uncertainties, we can

write the observer dynamics as:

�̇̂� = Λ�̂� + 𝜃𝑢�̅�𝑢 + 𝜃�̃�𝐿𝑍�̃�

�̂� = 𝜃𝑓𝐶̅�̂�

(14)

where 𝜃𝑢 , 𝜃�̃�, 𝜃𝑓 ∈ 𝑅𝑁×𝑁 are time-varying diagonal matrices

whose elements 𝜃𝑢,jj, 𝜃�̃�,jj and 𝜃𝑓,jj are stochastic and

𝜃𝑢,jj, , 𝜃�̃�,jj, 𝜃𝑓,jj ∈ {0,1} where j = 1, . . , N. These stochastic

elements represent the packet drops in communication.

Specifically, 𝜃𝑢 represents the packet loss in the

transmission of input information from processor m to other

processors, 𝜃�̃� represents the packet loss in the transmission

of output error from the processor m to all other processors,

and 𝜃𝑓 represents the packet loss in the transmission of the

partitioned states to the processor m for reconstruction of the

full state-vector.

In the above formulation, the uncertainties in 𝜃𝑢, 𝜃�̃�, and

𝜃𝑓 will significantly complicate the problem and may even

prevent an analytical treatment. To make the problem

tractable, we propose the following design which will

significantly reduce the complexity of the problem. First

note that both 𝑢 and �̃� are transmitted from the processor m

to the rest of the processors. Therefore, we can transmit 𝑢

and �̃� in the same packets together, which means that their

transmission statuses will be the same. Therefore, by this

design, we always have 𝜃𝑢 = 𝜃�̃� = 𝜃𝑢,�̃�. Secondly, if the

message �̂�𝑖 is lost, then it is impossible to get an accurate

estimate of �̃�. So in this case we can choose not to generate

�̃� and wait for the next �̂�𝑖. In this way, �̃� is generated only

when all �̂�𝑖 are successfully transmitted. This reduces the

number of input injections to observers, which, however, can

be acceptable if the process dynamics is slow. Therefore, by

using this formulation, the observer design will be conducted

under the multi-rate sampling framework, but the

uncertainty in 𝜃𝑓 is completely avoided. Then, the observer

dynamics becomes:

�̇̂� = Λ�̂� + 𝜃𝑢,�̃�{�̅�𝑢 + 𝐿𝑍�̃�}

�̂� = 𝐶̅�̂�

(15)

Note that, there are three major advantages of the diagonal

formulation as compared to the natural tri-diagonal

discretization. First, as discussed before, the diagonal form

avoids the synchronization requirement of the processors.

Second, diagonal form reduces the communication

overhead. Third, diagonal form observer (15) has only one

uncertain element (𝜃𝑢,�̃�) in its dynamics while the natural

discretization form observer (10) has at least two different

uncertain elements (𝜃𝑥 and 𝜃�̃�). Therefore, from the observer

design viewpoint, the diagonal form has a clear advantage.

Remark 1: The proposed approach is based on a system

transformation which in turn requires computing the matrix

inversion (P−1). However, this matrix inversion can be

computed offline and can be stored a priori in the processors.

Therefore, the transformation would not add extra real-time

or online computational cost.

Now, to suppress the effect of uncertainties, we include a

Kalman filter for state observer design in the presence of

packet-loss [12]. With the plant model (11) and observer

structure (15), the error dynamics can be written as:

�̇� = Λ𝑍 + {1 − 𝜃𝑢,�̃�}�̅�𝑢 − 𝜃𝑢,�̃�𝐿𝑍�̃�

�̃� = 𝐶̅𝑍

(16)

Then the observer gain 𝐿𝑍 can be designed by Kalman

filtering method to suppress the effect of uncertainties [13].

Remark 2: In this distributed computation scheme, the

allocation of the computational load to each processor

should be done before the estimation algorithm starts. The

main objective is that the computational load assigned to

each processor should be determined according to their

computational capacity. One possible way to accomplish this

objective is the use of consensus protocols [23].

Remark 3: Although 1D parabolic PDE is used for

illustration, this scheme can be extended to other forms of

PDEs. However, the main condition for applicability of the

scheme is: the PDE under consideration can be

approximated as an ODE model with system matrices

transformable into diagonal form.

Remark 4: Apart from the uncertainties arising from the

communication problems in the distributed computation, the

Kalman filter can also handle the sources of uncertainties,

e.g. unmodeled dynamics and parametric deviations.

III. APPLICATION OF THE DISTRIBUTED COMPUTATION

SCHEME TO AUTOMOTIVE BATTERY STATE ESTIMATION

Here, we discuss Lithium-ion battery state estimation in

1670

automotive applications as an illustration of the above

distributed computation scheme for PDEs. Li-ion batteries

are one of the most prominent energy storage solutions in

PHEV and EV applications [14]. In this paper, we use a

reduced electrochemical PDE model called Single Particle

Model (SPM) [15-17] to illustrate the idea of the proposed

distributed PDE computation scheme.

Note that, the SPM consists of a diffusion PDE that

describes the distributed Li-ion concentration in a battery

cell. This PDE can be approximated as a set of ODEs using

the finite difference discretization methods discussed in

previous sections. The dimension of the subsequent ODE

model can be large in case of finer discretization which is

required to retain the accuracy of the original PDE model to

a sufficient extent. Moreover, when the SPM modeling

approach is extended to battery packs in a vehicle consisting

of hundreds of battery cells, the overall dimension of the

ODE models can be significantly large and may be

computationally cumbersome for a single Battery

Management System (BMS) processor in the vehicle. For

example, for a battery pack with 100 cells and each cell

being modeled by a discretized SPM with 50 nodes, the

overall ODE dimension for the pack would be 5000. Under

this circumstance, the proposed distributed computation

scheme can be useful to speed up the computation without

adding extra computation hardware in the vehicle. As

discussed in the previous sections, a set of idle vehicular

computing processors can be utilized for the distributed

computation scheme for vehicular applications. In this paper,

we adopt the following state-observable SPM [18] that

captures the negative electrode Li-ion diffusion dynamics

(17) and the nonlinear voltage output map (18).

𝜕𝑐𝑠

−

𝜕𝑡
=

𝐷𝑠
−

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠
−

𝜕𝑟
)

𝜕𝑐𝑠
−

𝜕𝑟
|
𝑟=0

= 0,
𝜕𝑐𝑠

−

𝜕𝑟
|
𝑟=𝑅−

=
−𝐼

𝑎𝑠
−𝐹𝐷𝑠

−𝐴𝐿−

(17)

𝑉 =
�̅�𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
+𝐴𝐿+𝑖0

+)

−
�̅�𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
−𝐴𝐿−𝑖0

−)

+𝑈+(𝑘1𝑐𝑠𝑀 + 𝑘2) − 𝑈−(𝑐𝑠𝑀) − 𝑅𝑓𝐼

(18)

where 𝑐𝑠
− = 𝑐𝑠

−(𝑟, 𝑡) and 𝑐𝑠𝑀 are the Li-ion concentration

and boundary/surface concentration, 𝐼 is the battery cell

input current which is a boundary actuation/control and 𝑉 =
𝑉(𝑐𝑠𝑀 , 𝐼) is the output voltage which is boundary

measurement. The rest of the nomenclature can be found in

[19]. Note that, the PDE model state 𝑐𝑠
−(𝑟, 𝑡) in (16) can be

used to compute bulk State-of-Charge (SOC). The PDE

model described in (17) and (18), has a nonlinear output

function 𝑉. However, as noted in [18], the output function

𝑉(𝑐𝑠𝑀 , 𝐼) has a one-to-one correspondence with respect to

the surface concentration state 𝑐𝑠𝑀 and therefore 𝑉 can be

inverted to obtain the 𝑐𝑠𝑀 information. Consequently, the

PDE in (17) can effectively be considered as boundary-

measured. The ODE approximation using natural finite

difference discretization can be found in [20]. We can

transform the natural finite difference discretization form to

the diagonal form by the methodology described in the

previous section.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the

distributed implementations of the observer design based on

the SPM. The battery SPM parameters are taken from [21]

for the simulations. In this case study, we assumed four

individual vehicular processors are participating in the

estimator implementation. Each battery pack contains 300

battery cells. For illustration, we have considered a 30-node

discretization of the each battery cell model. In case of all

four battery packs needing their SOC to be computed for

each cell, the total state variable dimension of the system

shoots up to 36000. To illustrate the estimation performance,

we have chosen a representative battery cell SOC evolution.

For this particular battery cell with 30 states, the four

processors are assigned with 10, 10, 5 and 5 states. To

justify the effectiveness of the diagonalization-based

computation scheme, we compare it with the natural

discretized form. Moreover, to implement the packet-loss

scenario we assumed a packet dropout probability of 0.02.

In the scenario simulated, a 3A discharge scenario is

considered. The output voltage estimation performance is

shown in Fig. 3. The estimated bulk SOC and the estimation

error are shown in Fig. 4. It is clear that the distributed

scheme with the diagonalization form performs better than

the natural discretization form.

In the next study, we evaluate the performance of both

schemes by varying the probability of the packet-loss. The

result is shown in Fig. 5. It is evident that with a higher

probability of packet-loss the performance of the natural

discretization scheme degrades whereas the diagonalization

based scheme is able to maintain robustness to the increased

packet dropout probability.

Figure 3: Voltage estimation performance for constant input current

discharge

1671

Figure 4: Bulk SOC estimation performance for constant input current

discharge

Figure 5: Bulk SOC error of the schemes under different packet-loss
probabilities.

V. CONCLUSION

In this paper, a distributed computing scheme is presented

for estimation/control of systems modeled by PDEs. The

purpose of the distributed computation scheme is to

eliminate the need for a single expensive computational

resource for implementing the high-dimension approximated

ODEs in the control/estimator design. The scheme

distributes the computation load to available computing

resources to meet the afore-mentioned objective. One of the

major issues in a real-time distributed computation scheme

lies in the uncertainties induced by the imperfections of

communication networks which can lead to degraded

performance of the designed estimator. The proposed

computation scheme offers robustness to such uncertainties

by using a diagonalization-based approach to reduce the

communication requirement among the computational

resources. Further, an explicit model of network

uncertainties is considered in the estimator design stage to

enhance the robustness. The effectiveness of the scheme is

demonstrated by simulation.

REFERENCES

[1] D. P. Bertsekas, and J. N. Tsitsiklis, “Some aspects of parallel and
distributed iterative algorithms—a survey,” Automatica. vol. 27, no.1,

pp.3-21, 1991.

[2] H. Attiya, and J. Welch. Distributed computing: fundamentals,

simulations, and advanced topics. Vol. 19. John Wiley & Sons, 2004.

[3] Aamo, Ole Morten, and Miroslav Krstic. Flow control by feedback:

stabilization and mixing. Springer Science & Business Media, 2002.

[4] W. Hong, Y. T. Lee, and H. Gong, “Thermal analysis of layer
formation in a stepless rapid prototyping process,” Applied Thermal

Engineering, vol. 24, no. 2, pp. 255–268, 2004.

[5] S. S. Ge, T. H. Lee, G. Zhu, and F. Hong,“Variable structure control
of a distributed-parameter flexible beam,” Journal of Robotic Systems,

vol. 18, no. 1, pp. 17–27, 2001.

[6] Z. Hidayat, R. Babuska, B. De Schutter, and A. Nunez, “Observers for
linear distributed-parameter systems: A survey,” In IEEE

International Symposium on Robotic and Sensors Environments

(ROSE), pp. 166-171, 2011.
[7] M. J. Balas, and C. R. Johnson, “Adaptive control of distributed

parameter systems: The ultimate reduced-order problem,” In 18th

IEEE Conference on Decision and Control including the Symposium
on Adaptive Processes, vol. 2, 1979.

[8] M. M. Peet, and Y. V. Peet, “A parallel-computing solution for

optimization of polynomials,” In American Control Conference
(ACC), 2010.

[9] R. Kamyar, M. M. Peet, and Y. Peet, “Solving Large-Scale Robust

Stability Problems by Exploiting the Parallel Structure of Polya's
Theorem,” IEEE Transactions on Automatic Control, vol. 58, no. 8

pp. 1931-1947, 2013.

[10] T. S. Ursell, “The Diffusion Equation A Multi-dimensional Tutorial,”
California Institute of Technology, Pasadena, Tech. Rep., 2007.

[11] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in
networked control systems—a survey,” IEEE Transactions

on Industrial Informatics, vol. 9, no. 1, 403-416, 2013.

[12] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent
results in networked control systems,” Proceedings of IEEE, vol. 95,

no. 1, pp. 138–162, 2007.

[13] F. L. Lewis. Optimal estimation: with an introduction to stochastic
control theory. New York, Wiley, 1986.

[14] A. G. Boulanger, A. C. Chu, S. Maxx, and D. L. Waltz, “Vehicle

electrification: Status and issues,” Proceedings of the IEEE, vol. 99,
no. 6, pp. 1116-1138, 2011.

[15] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A.Kojic,

“Algorithms for advanced battery-management systems,”
IEEE Control Systems Magazine, vol. 30, no. 3, pp. 49-68, 2010.

[16] S. Santhanagopalan, and R. E. White, “Online estimation of the state

of charge of a lithium ion cell,” Journal of Power Sources, vol. 161,
no. 2, pp. 1346-1355, 2006.

[17] D. D. Domenico, A. Stefanopoulou, and G. Fiengo, “Lithium-ion

battery state of charge and critical surface charge estimation using an
electrochemical model-based extended Kalman filter,” ASME Journal

of Dynamic Systems, Measurement, and Control, vol. 132, no. 6, pp.

061302, 2010.
[18] S. J. Moura, N. A. Chaturvedi, and M. Krstic, “PDE estimation

techniques for advanced battery management systems—Part I: SOC

estimation,” In 2012 American Control Conference (ACC), pp. 559-
565, 2012.

[19] S. Dey, B. Ayalew, and P. Pisu, “Nonlinear Robust Observers for

State-of-Charge Estimation of Lithium-Ion Cells Based on a Reduced
Electrochemical Model,” IEEE Transactions on Control Systems

Technology, vol. 23, no. 5, pp. 1935-1942, 2015.

[20] S. Dey, B. Ayalew, and P. Pisu, “Nonlinear Adaptive Observer Design
for a Lithium-Ion Battery Cell Based on Coupled Electrochemical-

Thermal Model,” ASME Journal of Dynamic Systems, Measurement,

and Control, vol. 137, no. 11, pp. 111005, 2015.
[21] K. A. Smith, C. D. Rahn, and C. Wang, “Model-based electrochemical

estimation and constraint management for pulse operation of lithium

ion batteries,” IEEE Transactions on Control Systems
Technology, vol. 18, no. 3, pp. 654-663, 2010.

[22] D. S. Bernstein. Matrix mathematics: theory, facts, and formulas.

Princeton University Press, 2009.
[23] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and

cooperation in networked multi-agent systems,” In Proceedings of the

IEEE, vol. 95, no.1, pp. 215-233, 2007.

1672

