
  

 

Abstract—Real-time estimation/control of Partial 

Differential Equation (PDE) systems, especially for large-scale 

applications, generally involves high computational burdens. In 

this paper, we propose a distributed computation scheme, 

which can leverage available and otherwise idle computing 

resources to cooperatively solve the high-dimensional 

controller/estimator implementations for fine-grained 

management of such PDE systems. Such a real-time distributed 

computation scheme requires communication among the 

computing resources which is subject to uncertainties due to 

imperfections of the communication network. Given this 

scenario, the proposed approach: 1) includes a modeling 

framework in the controller/estimator implementation that 

explicitly addresses network uncertainties, 2) uses a 

diagonalization-based scheme where the approximated ODE 

form is transformed into the diagonal form before 

implementation in order to minimize the communication 

requirement, and 3) includes a filtering solution to suppress the 

effect of communication uncertainties. The proposed scheme is 

illustrated via a real-time state estimation of individual battery 

cells in vehicle battery packs using a network of vehicular 

computing units. Simulation results are included to illustrate 

the effectiveness of the scheme. 

I. INTRODUCTION 

Distributed Computing Systems (DCS) are becoming very 

useful in several engineering applications. The concept of 

DCS can be boiled down to cooperative execution of a 

computational problem by a set of computing resources. 

However, the execution process generally has some 

limitations such as weak links with the central coordination, 

communication constraints (communication bandwidth, 

communication delays, unreliable communication link) etc 

[1]. The advantage of DCSs lies in the reduction of 

computation time for large-scale computations given that the 

communication imperfections are taken care of [2]. In this 

paper, we proposed a computation approach that can be 

deployed over DCS for real-time estimation and control of 

Partial Differential Equation (PDE) systems. 

Several spatially distributed and large-scale systems can 

be modeled by PDEs such as: fluid flow systems [3], 
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manufacturing processes [4], large structures [5], etc. 

Controller and estimator implementation for PDEs in real-

time hardware is often done in the Ordinary Differential 

Equation (ODE) form [6]. Due to the inherent infinite-

dimensional nature of the PDEs, generally the dimension of 

the ODE system that closely approximates the PDEs is very 

high. Although several model reductions are available, such 

reduced models may neglect critical modes of the system, 

leading to control/observation spillover [7]. However, high-

dimensional ODE implementations that retain fine-grained 

information need processors with high-end computational 

specifications to solve the large matrix sums and products 

needed at each iteration step. These specifications are 

generally cost-prohibitive for real-time control/estimation 

applications.. In this paper, we propose a potential solution 

to this high computation requirement by exploiting a 

distributed computation framework, which will essentially 

reduce the computation time, so that the high-dimensional 

controllers/estimators can actually meet hard real-time 

constraints. We illustrate the proposed scheme in the context 

of linear, parabolic, boundary controlled and boundary 

measured PDEs. 

In our problem, the objective is to solve a computation 

task of high computational burden by partitioning the overall 

computation tasks and distributing them over multiple 

available computing resources. In the literature, few works 

exist that try to exploit the distributed computing for offline 

control design or analysis problems like optimization of 

polynomials [8] and large-scale robust stability [9]. Here, 

our proposed distributed computing approach addresses an 

online or real-time computation problem. Note that, the 

computational burden mentioned here arises from the high 

dimension (in terms of number of states) of the 

control/estimation model, not from the structural 

complexities of the model (such as nonlinearities). 

As there are communications among the computing 

resources, the communication uncertainties may potentially 

affect the performance of the controller or estimator 

significantly. The finite difference discretization is one of 

the natural and widely used forms in the implementation of 

the PDEs. However, the communication requirement among 

several computing resources could be high in such natural 

discretization which in turn introduces significant 

communication uncertainties in the controller/estimator. The 

proposed distributed scheme minimizes the effect of such 

uncertainties in three ways: 1) by using a diagonal form 

(obtained by transforming the original natural finite 

difference discretization form) that requires significantly less 
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communication among the computing resources as 

compared to the original natural discretization form, 2) by 

considering an explicit model of network uncertainties in the 

controller/estimator design phase to enhance the 

performance and, 3) by including a filtering solution to 

suppress the effect of network uncertainties. The proposed 

scheme is illustrated on a state estimation problem of 

individual battery cells in vehicular battery pack.  

The paper is organized as follows. Section II provides the 

problem formulation, discusses a computation scheme for 

PDEs using the natural discretization via finite-difference 

method and then proposes the diagonalization-based 

distributed computation scheme. Section III discusses the 

application of the proposed scheme for battery PDE state 

estimation along with simulation studies in Section IV. 

Section V summarizes the conclusion of the work. 

II. DISTRIBUTED COMPUTATION SCHEME FOR PDES 

A. Problem Formulation 

Consider a linear, parabolic, boundary controlled and 

boundary measured PDE as described below: 

𝜕𝑐(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑐(𝑥, 𝑡)

𝜕𝑥2
, 1 ≥ 𝑥 ≥ 0, 𝑡 ≥ 0 

(1) 

with the following boundary conditions: 

𝑐(0, 𝑡) = 0,
𝜕𝑐(1, 𝑡)

𝜕𝑥
= 𝐾𝑢, 𝑡 ≥ 0 

(2) 

and measurement equation: 

𝑦 = 𝑐(1, 𝑡), 𝑡 ≥ 0 (3) 

where 𝑐 is some dependent variable which is a function of 

both time 𝑡 ∈ [0,∞) and space 𝑥 ∈ [0,1], 𝐷 ∈ 𝑅+ and 𝐾 ∈
𝑅 are known scalar coefficients, 𝑢 ∈ 𝑅 is the scalar control 

input acting on the boundary and 𝑦 ∈ 𝑅 is the boundary 

measurement. Such PDEs have broad applications in 

diffusion problems [10]. 

B. PDE Observer Computation Scheme via Natural Finite 

Difference Discretization Form 

The PDE described in (1)-(3) can be approximated by a 

set of ODEs using the method of line technique where the 

spatial derivatives are approximated using central finite 

difference methods. The spatial domain is discretized in 𝑁 

nodes [0, ∆, 2∆, … ,1] where ∆= 1/𝑁. Correspondingly, the 

dependent variable 𝑐 is discretized into a set of variables 

each of which corresponds to each node as [𝑐0, 𝑐1, … , 𝑐𝑁]. 
Then, the first and second order spatial derivatives are 

approximated using finite central difference methods as: 

𝜕𝑐𝑖

𝜕𝑥
≈

𝑐𝑖+1 − 𝑐𝑖−1

2∆
 

𝜕2𝑐𝑖

𝜕𝑥2
≈

𝑐𝑖+1 − 2𝑐𝑖 + 𝑐𝑖−1

∆2
 

 

 

 

(4) 

Based on the discretization (4), the PDE is converted to a set 

of ODEs as given below: 

�̇�1 = −2𝑎𝑐1 + 𝑎𝑐2 
�̇�𝑗 = 𝑎𝑐𝑗−1 − 2𝑎𝑐𝑗 + 𝑎𝑐𝑗+1 

�̇�𝑁 = 2𝑎𝑐𝑁−1 − 2𝑎𝑐𝑁 + 2
𝐾

∆
𝑢 

 

 

 

(5) 

where 𝑗 = 2, . . , 𝑁 − 1 and 𝑎 = 𝐷/∆2. Now, using (5), the 

ODE state-space model can be formed as below: 

�̇� = 𝐴𝑋 + 𝐵𝑢 
𝑌 = 𝐶𝑋 

 

(6) 

where 𝑋 = [𝑐1, … , 𝑐𝑁]𝑇 ∈ 𝑅𝑁 is the state vector , 𝑢 ∈ 𝑅 is 

the control, 𝑌 ∈ 𝑅 is the boundary measurement, 𝐴 ∈ 𝑅𝑁×𝑁 

is a system matrix, 𝐵 = [0,0, . . ,2𝐾/∆]𝑇 ∈ 𝑅𝑁×1, 𝐶 =
[0,0, . . ,1] ∈ 𝑅1×𝑁. The structure of the matrix is given as 

follows: 

𝐴 = 𝑎

[
 
 
 
 
 
−2 1 0 0 … 0 0 0
1 −2 1 0 … 0 0 0
0 1 −2 1 … 0 0 0
… … … … … … … …
0 0 0 0 … 1 −2 1
0 0 0 0 … 0 2 −2]

 
 
 
 
 

 

 

 

 

 

 

(7) 

 Now, we seek to design an observer for estimating the 

states of this reduced ODE system (6). The most common 

form of the observer structure in estimation theory is the 

copy of the system along with an output error injection term. 

In context to our system (6), the observer structure can be 

written as: 

�̇̂� = 𝐴�̂� + 𝐵𝑢 + 𝐿�̃� 

�̂� = 𝐶�̂� 

 

(8) 

where �̂� and �̂� are the estimated state vector and the 

estimated output, �̃� = 𝑌 − �̂� is the output error and 𝐿 ∈

𝑅𝑁×1 is the observer gain vector to be designed. 

 

 
Figure 1: Implementation schematic of the PDE observer using distributed 

computing scheme via natural discretization (tri-diagonal form). The 
measurement of boundary output and boundary control input is received by 

processor m which is assigned the last partition of the computation. 

Moreover, processor m is receiving the states from the other processors and 
reconstructing the full-state vector. 

When the dimension of system (8) is high, the 

computational load for solving it becomes unacceptable for 

many individual low-cost processors. Therefore, we consider 

a scenario where we have 𝑚 number of computing nodes or 

processors available to distribute the computation of the 

observer dynamics (8). The natural way to allocate the 

computation to the processors is to partition the overall 

observer dynamics into 𝑚 chunks and assign each chunk to 

one processor. The partitioned dynamics can be written as: 

�̇̂�𝑖 = 𝐴𝑖�̂�𝑖 + 𝐴𝑖̅�̂� + 𝐵𝑖𝑢 + 𝐿𝑖�̃� (9) 
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where 𝑖 = 1,… ,𝑚,  �̂� = [�̂�1
𝑇 , �̂�2

𝑇 , … , �̂�𝑚
𝑇 ]𝑇, 𝐵 =

[𝐵1
𝑇 , 𝐵2

𝑇 , … , 𝐵𝑚
𝑇 ]𝑇, 𝐿 = [𝐿1

𝑇 , 𝐿2
𝑇 , … , 𝐿𝑚

𝑇 ]𝑇, 𝐴𝑖 is the i-th block 

on the diagonal of matrix A, and  𝐴𝑖̅ is constructed by the 

corresponding rows in matrix A after replacing 𝐴𝑖 elements 

with 0. Essentially, the term 𝐴𝑖̅�̂� represents the interaction of 

each partitioned block with their adjacent neighboring 

blocks. This interaction is due to the tri-diagonal nature of 

the original system matrix 𝐴. Moreover, note that 𝐵𝑖
𝑇  for 𝑖 =

1, . . , 𝑚 − 1 are zero vectors of appropriate dimensions due 

to the boundary controlled nature of the PDE plant. The 

implementation of this distributed computation structure is 

shown in Fig. 1.  

C. Modeling Communication Uncertainty  

Note that, in the implementation structure in Fig. 1, the 

processors are communicating among each other through 

wired or wireless communication networks. Communication 

networks can be highly unpredictable. Hidden terminal 

problems may also exist, causing transmission collisions and 

thus message losses in the networks [11]. In fact, for many 

purposes (such as real-time control), it is sometimes 

advantageous to discard old, non-transmitted messages when 

a new message becomes available as the newer message is 

fresher than non-transmitted old messages and is more 

valuable for real-time applications. In memoryless channels, 

message losses result in unreliable communication links with 

a successful transmission rate 0 < 𝑝𝑖,𝑗 < 1. That is, with 

probability 𝑝𝑖,𝑗, a message from processor i can be 

successfully sent to processor j, and with probability 1 − 𝑝𝑖,𝑗 

the message will be lost. If we represent the channel status 

as a random variable 𝜃𝑖,𝑗 ∈ {0, 1}, then 𝑃{𝜃𝑖,𝑗 = 1} = 𝑝𝑖,𝑗.  

Considering these network related uncertainties, the observer 

dynamics can be written as: 

�̇̂� = 𝜃𝑥𝐴�̂� + 𝐵𝑢 + 𝜃�̃�𝐿�̃� 

�̂� = 𝐶�̂� 

�̅� = 𝜃𝑓�̂� 

 

 

(10) 

where �̅� is the full state vector reconstructed at processor m 

and 𝜃𝑥 , 𝜃�̃�, 𝜃𝑓 ∈ 𝑅𝑁×𝑁 are time-varying diagonal matrices 

whose elements 𝜃𝑥,jj, 𝜃�̃�,jj and 𝜃𝑓,jj  are stochastic and 

𝜃𝑥,jj, 𝜃𝑓,jj, 𝜃�̃�,jj ∈ {0,1} where 𝑗 = 1, . . , 𝑁. These stochastic 

elements represent the packet drops in communication. 

Specifically, 𝜃𝑥 represents the packet loss in the 

transmission of boundary nodes for each processor (as each 

processor interacts with two other processors). Then, 𝜃�̃� 

represents the packet loss in the transmission of output error 

from processor m to all other processors. Finally, 𝜃𝑓 

represents the packet loss in the transmission of the 

partitioned states to processor m for reconstruction of the full 

state-vector. Note that, the last chunk of the computation is 

given to the processor which is receiving the measurement 

information from the plant directly (refer to Fig. 1). This 

assignment reduces the communication related uncertainties 

in the 𝐵𝑢 term and the 𝐶�̂� term. 

However, this particular distributed computation approach 

requires exchanging observer state information (�̂�𝑖) between 

processors (due to the presence of 𝐴𝑖̅�̂� term in (9)), which 

might be problematic due to two reasons: 

1) At each time step k, the calculation of ODE in one 

processor depends on the observer state information �̂�𝑖 from 

neighboring processors. If the calculation of ODEs in 

different processors are not in pace, which is highly possible 

due to differences in computational power and conditions in 

different processors,  then one processor conducting the k-th 

step ODE iteration needs to wait until neighboring 

processors finish the k-th step calculation and pass results to 

it. In other words, calculation paces between different 

processors need to be precisely synchronized, which is not 

an easy job, if at all possible. 

2) State information needs to be exchanged every ODE 

iteration step which means substantial communication 

overhead.  

Therefore, the exchange of estimated state information �̂�𝑖 

should be minimized and even prevented via alternative 

computation schemes. Next we propose a new approach 

which can prevent exchanging the state information.  

D. PDE Observer Computation Scheme via Diagonal Form 

Here, we propose to systematically explore the 

characteristics of the dynamical systems under consideration 

and decompose the system according to the internal coupling 

between the states. Given that the internal coupling between 

states is embedded in the original system matrix 𝐴, it can be 

revealed by analyzing the structure of matrix 𝐴.  We propose 

to use following real eigen-decomposition of system matrix 

𝐴 to probe the structure of internal coupling: 

Step 1: Diagonalize 𝐴 matrix with 𝐴 = 𝑃−1Λ𝑃 with 

similarity transformation matrix 𝑃 which is invertible, where 

Λ is the real Jordan form [22] having a block diagonal form 

𝛬 = diag{𝛬1, 𝛬2, …, 𝛬𝑚}. 

Step 2: The new transformed system dynamics become: 

�̇� = Λ𝑍 + �̅�𝑢 

𝑌 = 𝐶̅𝑍 

 

(11) 

where 𝑍 = 𝑃𝑋, �̅� = 𝑃𝐵 and  𝐶̅ = 𝐶𝑃−1. 

Step 3: The observer structure can be chosen as: 

�̇̂� = Λ�̂� + �̅�𝑢 + 𝐿𝑍�̃� 

�̂� = 𝐶̅�̂� 

 

(12) 

where �̂� and �̂� are the estimated state vector and the 

estimated output, �̃� is the output error and 𝐿𝑍 ∈ 𝑅𝑁×1 is the 

observer gain vector to be designed. 

Step 4: Now, considering the existence of 𝑚 processors, the 

observer dynamics (12) can be decomposed into 𝑚 

independent subsystems as given below: 

�̇�1 = Λ1𝑍1 + �̅�1𝑢 + 𝐿𝑍1�̃�  

 �̇�2 = Λ2𝑍2 + �̅�2𝑢 + 𝐿𝑍2�̃� 

       ⋮ 

 �̇�𝑚 = Λ𝑚𝑍𝑚 + �̅�𝑚𝑢 + 𝐿𝑍𝑚�̃� 

 

 

 

 

 

(13) 

where 𝑖 = 1, . . 𝑚, �̅�𝑖 and 𝐿𝑍𝑖 is the corresponding i-th block 

in �̅� and 𝐿𝑍. 
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Step 5:  Distribute the  𝑚 independent subsystems in (13) to 

𝑚 available processors. Each subsystem 𝑍𝑖 cannot be 

separated and must be allocated to one processor. Since 

subsystems are completely decoupled from each other, there 

is no need to exchange any estimated state information �̂�𝑖 

between processors. All estimated states �̂�1, �̂�2, … , �̂�𝑚 are 

transmitted to one particular processor where the original 

state will be reconstructed as �̂� = 𝑃−1�̂�. 

The distributed computing scheme for this diagonalized 

discretization is shown in Fig. 2. 

 
Figure 2: Implementation schematic of the PDE observer using distributed 

computing scheme via diagonal form. The measurement of boundary output 
and boundary control input is received by processor m which is assigned the 

last partition of the computation. Moreover, processor m is receiving the 

states from the other processors and reconstructing the full state vector. 
Now, considering the network induced uncertainties, we can 

write the observer dynamics as: 

�̇̂� = Λ�̂� + 𝜃𝑢�̅�𝑢 + 𝜃�̃�𝐿𝑍�̃� 

�̂� = 𝜃𝑓𝐶̅�̂� 

 

(14) 

where 𝜃𝑢 , 𝜃�̃�, 𝜃𝑓 ∈ 𝑅𝑁×𝑁 are time-varying diagonal matrices 

whose elements 𝜃𝑢,jj, 𝜃�̃�,jj and 𝜃𝑓,jj are stochastic and 

𝜃𝑢,jj, , 𝜃�̃�,jj, 𝜃𝑓,jj ∈ {0,1} where j = 1, . . , N. These stochastic 

elements represent the packet drops in communication. 

Specifically, 𝜃𝑢 represents the packet loss in the 

transmission of input information from processor m to other 

processors, 𝜃�̃� represents the packet loss in the transmission 

of output error from the processor m to all other processors, 

and  𝜃𝑓 represents the packet loss in the transmission of the 

partitioned states to the processor m for reconstruction of the 

full state-vector. 

In the above formulation, the uncertainties in 𝜃𝑢, 𝜃�̃�, and 

𝜃𝑓 will significantly complicate the problem and may even 

prevent an analytical treatment. To make the problem 

tractable, we propose the following design which will 

significantly reduce the complexity of the problem. First 

note that both  𝑢 and �̃� are transmitted from the processor m 

to the rest of the processors. Therefore, we can transmit  𝑢 

and �̃� in the same packets together, which means that their 

transmission statuses will be the same. Therefore, by this 

design, we always have 𝜃𝑢 = 𝜃�̃� = 𝜃𝑢,�̃�. Secondly, if the 

message �̂�𝑖  is lost, then it is impossible to get an accurate 

estimate of �̃�. So in this case we can choose not to generate 

�̃� and wait for the next �̂�𝑖. In this way,  �̃� is generated only 

when all �̂�𝑖 are successfully transmitted. This reduces the 

number of input injections to observers, which, however, can 

be acceptable if the process dynamics is slow. Therefore, by 

using this formulation, the observer design will be conducted 

under the multi-rate sampling framework, but the 

uncertainty in 𝜃𝑓 is completely avoided.  Then, the observer 

dynamics becomes: 

�̇̂� = Λ�̂� + 𝜃𝑢,�̃�{�̅�𝑢 + 𝐿𝑍�̃�} 

�̂� = 𝐶̅�̂� 

 

(15) 

Note that, there are three major advantages of the diagonal 

formulation as compared to the natural tri-diagonal 

discretization. First, as discussed before, the diagonal form 

avoids the synchronization requirement of the processors. 

Second, diagonal form reduces the communication 

overhead. Third, diagonal form observer (15) has only one 

uncertain element (𝜃𝑢,�̃�) in its dynamics while the natural 

discretization form observer (10) has at least two different 

uncertain elements (𝜃𝑥 and 𝜃�̃�). Therefore, from the observer 

design viewpoint, the diagonal form has a clear advantage. 

Remark 1: The proposed approach is based on a system 

transformation which in turn requires computing the matrix 

inversion (P−1). However, this matrix inversion can be 

computed offline and can be stored a priori in the processors. 

Therefore, the transformation would not add extra real-time 

or online computational cost. 

Now, to suppress the effect of uncertainties, we include a 

Kalman filter for state observer design in the presence of 

packet-loss [12]. With the plant model (11) and observer 

structure (15), the error dynamics can be written as: 

�̇� = Λ𝑍 + {1 − 𝜃𝑢,�̃�}�̅�𝑢 − 𝜃𝑢,�̃�𝐿𝑍�̃� 

�̃� = 𝐶̅𝑍 

 

(16) 

Then the observer gain 𝐿𝑍 can be designed by Kalman 

filtering method to suppress the effect of uncertainties [13]. 

Remark 2: In this distributed computation scheme, the 

allocation of the computational load to each processor 

should be done before the estimation algorithm starts. The 

main objective is that the computational load assigned to 

each processor should be determined according to their 

computational capacity. One possible way to accomplish this 

objective is the use of consensus protocols [23]. 

Remark 3: Although 1D parabolic PDE is used for 

illustration, this scheme can be extended to other forms of 

PDEs. However, the main condition for applicability of the 

scheme is: the PDE under consideration can be 

approximated as an ODE model with system matrices 

transformable into diagonal form. 

Remark 4: Apart from the uncertainties arising from the 

communication problems in the distributed computation, the 

Kalman filter can also handle the sources of uncertainties, 

e.g. unmodeled dynamics and parametric deviations. 

III. APPLICATION OF THE DISTRIBUTED COMPUTATION 

SCHEME TO AUTOMOTIVE BATTERY STATE ESTIMATION  

Here, we discuss Lithium-ion battery state estimation in 
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automotive applications as an illustration of the above 

distributed computation scheme for PDEs. Li-ion batteries 

are one of the most prominent energy storage solutions in 

PHEV and EV applications [14]. In this paper, we use a 

reduced electrochemical PDE model called Single Particle 

Model (SPM) [15-17] to illustrate the idea of the proposed 

distributed PDE computation scheme.  

Note that, the SPM consists of a diffusion PDE that 

describes the distributed Li-ion concentration in a battery 

cell. This PDE can be approximated as a set of ODEs using 

the finite difference discretization methods discussed in 

previous sections.  The dimension of the subsequent ODE 

model can be large in case of finer discretization which is 

required to retain the accuracy of the original PDE model to 

a sufficient extent. Moreover, when the SPM modeling 

approach is extended to battery packs in a vehicle consisting 

of hundreds of battery cells, the overall dimension of the 

ODE models can be significantly large and may be 

computationally cumbersome for a single Battery 

Management System (BMS) processor in the vehicle. For 

example, for a battery pack with 100 cells and each cell 

being modeled by a discretized SPM with 50 nodes, the 

overall ODE dimension for the pack would be 5000. Under 

this circumstance, the proposed distributed computation 

scheme can be useful to speed up the computation without 

adding extra computation hardware in the vehicle. As 

discussed in the previous sections, a set of idle vehicular 

computing processors can be utilized for the distributed 

computation scheme for vehicular applications. In this paper, 

we adopt the following state-observable SPM [18] that 

captures the negative electrode Li-ion diffusion dynamics 

(17) and the nonlinear voltage output map (18). 

 
𝜕𝑐𝑠

−

𝜕𝑡
=

𝐷𝑠
−

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠
−

𝜕𝑟
) 

𝜕𝑐𝑠
−

𝜕𝑟
|
𝑟=0

= 0,
𝜕𝑐𝑠

−

𝜕𝑟
|
𝑟=𝑅−

=
−𝐼

𝑎𝑠
−𝐹𝐷𝑠

−𝐴𝐿−
 

 

(17) 

𝑉 =
�̅�𝑇

𝛼+𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
+𝐴𝐿+𝑖0

+) 

−
�̅�𝑇

𝛼−𝐹
𝑠𝑖𝑛ℎ−1 (

𝐼

2𝑎𝑠
−𝐴𝐿−𝑖0

−) 

+𝑈+(𝑘1𝑐𝑠𝑀 + 𝑘2) − 𝑈−(𝑐𝑠𝑀) − 𝑅𝑓𝐼 
 

(18) 

 

where 𝑐𝑠
− = 𝑐𝑠

−(𝑟, 𝑡) and 𝑐𝑠𝑀 are the Li-ion concentration 

and boundary/surface concentration, 𝐼 is the battery cell 

input current which is a boundary actuation/control and 𝑉 =
𝑉(𝑐𝑠𝑀 , 𝐼) is the output voltage which is boundary 

measurement. The rest of the nomenclature can be found in 

[19]. Note that, the PDE model state 𝑐𝑠
−(𝑟, 𝑡) in (16) can be 

used to compute bulk State-of-Charge (SOC). The PDE 

model described in (17) and (18), has a nonlinear output 

function 𝑉. However, as noted in [18], the output function 

𝑉(𝑐𝑠𝑀 , 𝐼) has a one-to-one correspondence with respect to 

the surface concentration state 𝑐𝑠𝑀 and therefore 𝑉 can be 

inverted to obtain the 𝑐𝑠𝑀 information. Consequently, the 

PDE in (17) can effectively be considered as boundary-

measured. The ODE approximation using natural finite 

difference discretization can be found in [20]. We can 

transform the natural finite difference discretization form to 

the diagonal form by the methodology described in the 

previous section. 

IV. SIMULATION RESULTS  

In this section, we present the simulation results of the 

distributed implementations of the observer design based on 

the SPM. The battery SPM parameters are taken from [21] 

for the simulations. In this case study, we assumed four 

individual vehicular processors are participating in the 

estimator implementation. Each battery pack contains 300 

battery cells. For illustration, we have considered a 30-node 

discretization of the each battery cell model. In case of all 

four battery packs needing their SOC to be computed for 

each cell, the total state variable dimension of the system 

shoots up to 36000. To illustrate the estimation performance, 

we have chosen a representative battery cell SOC evolution. 

For this particular battery cell with 30 states, the four 

processors are assigned with 10, 10, 5 and 5 states. To 

justify the effectiveness of the diagonalization-based 

computation scheme, we compare it with the natural 

discretized form. Moreover, to implement the packet-loss 

scenario we assumed a packet dropout probability of 0.02.  

In the scenario simulated, a 3A discharge scenario is 

considered. The output voltage estimation performance is 

shown in Fig. 3. The estimated bulk SOC and the estimation 

error are shown in Fig. 4. It is clear that the distributed 

scheme with the diagonalization form performs better than 

the natural discretization form. 

In the next study, we evaluate the performance of both 

schemes by varying the probability of the packet-loss. The 

result is shown in Fig. 5. It is evident that with a higher 

probability of packet-loss the performance of the natural 

discretization scheme degrades whereas the diagonalization 

based scheme is able to maintain robustness to the increased 

packet dropout probability. 

 
Figure 3: Voltage estimation performance for constant input current 

discharge 
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Figure 4: Bulk SOC estimation performance for constant input current 

discharge 

 
Figure 5: Bulk SOC error of the schemes under different packet-loss 
probabilities. 

V. CONCLUSION 

In this paper, a distributed computing scheme is presented 

for estimation/control of systems modeled by PDEs. The 

purpose of the distributed computation scheme is to 

eliminate the need for a single expensive computational 

resource for implementing the high-dimension approximated 

ODEs in the control/estimator design. The scheme 

distributes the computation load to available computing 

resources to meet the afore-mentioned objective. One of the 

major issues in a real-time distributed computation scheme 

lies in the uncertainties induced by the imperfections of 

communication networks which can lead to degraded 

performance of the designed estimator. The proposed 

computation scheme offers robustness to such uncertainties 

by using a diagonalization-based approach to reduce the 

communication requirement among the computational 

resources. Further, an explicit model of network 

uncertainties is considered in the estimator design stage to 

enhance the robustness. The effectiveness of the scheme is 

demonstrated by simulation. 

REFERENCES 

[1] D. P. Bertsekas, and J. N. Tsitsiklis, “Some aspects of parallel and 
distributed iterative algorithms—a survey,” Automatica. vol. 27, no.1, 

pp.3-21, 1991. 

[2] H. Attiya, and J. Welch. Distributed computing: fundamentals, 

simulations, and advanced topics. Vol. 19. John Wiley & Sons, 2004. 

[3] Aamo, Ole Morten, and Miroslav Krstic. Flow control by feedback: 

stabilization and mixing. Springer Science & Business Media, 2002. 

[4] W. Hong, Y. T. Lee, and H. Gong, “Thermal analysis of layer 
formation in a stepless rapid prototyping process,” Applied Thermal 

Engineering, vol. 24, no. 2, pp. 255–268, 2004. 

[5] S. S. Ge, T. H. Lee, G. Zhu, and F. Hong,“Variable structure control 
of a distributed-parameter flexible beam,” Journal of Robotic Systems, 

vol. 18, no. 1, pp. 17–27, 2001. 

[6] Z. Hidayat, R. Babuska, B. De Schutter, and A. Nunez, “Observers for 
linear distributed-parameter systems: A survey,” In IEEE 

International Symposium on Robotic and Sensors Environments 

(ROSE), pp. 166-171, 2011. 
[7] M. J. Balas, and C. R. Johnson, “Adaptive control of distributed 

parameter systems: The ultimate reduced-order problem,” In 18th 

IEEE Conference on Decision and Control including the Symposium 
on Adaptive Processes, vol. 2, 1979. 

[8] M. M. Peet, and Y. V. Peet, “A parallel-computing solution for 

optimization of polynomials,” In American Control Conference 
(ACC), 2010. 

[9] R. Kamyar, M. M. Peet, and Y. Peet, “Solving Large-Scale Robust 

Stability Problems by Exploiting the Parallel Structure of Polya's 
Theorem,” IEEE Transactions on Automatic Control, vol. 58, no. 8 

pp. 1931-1947, 2013. 

[10] T. S. Ursell, “The Diffusion Equation A Multi-dimensional Tutorial,” 
California Institute of Technology, Pasadena, Tech. Rep., 2007. 

[11] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in 
networked control systems—a survey,” IEEE Transactions 

on Industrial Informatics, vol. 9, no. 1, 403-416, 2013. 

[12] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent 
results in networked control systems,” Proceedings of IEEE, vol. 95, 

no. 1, pp. 138–162, 2007. 

[13] F. L. Lewis. Optimal estimation: with an introduction to stochastic 
control theory. New York, Wiley, 1986. 

[14] A. G. Boulanger, A. C. Chu, S. Maxx, and D. L. Waltz, “Vehicle 

electrification: Status and issues,” Proceedings of the IEEE, vol. 99, 
no. 6, pp. 1116-1138, 2011. 

[15] N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A.Kojic, 

“Algorithms for advanced battery-management systems,” 
IEEE Control Systems Magazine, vol. 30, no. 3, pp. 49-68, 2010. 

[16] S. Santhanagopalan, and R. E. White, “Online estimation of the state 

of charge of a lithium ion cell,” Journal of Power Sources, vol. 161, 
no. 2, pp. 1346-1355, 2006. 

[17] D. D. Domenico, A. Stefanopoulou, and G. Fiengo, “Lithium-ion 

battery state of charge and critical surface charge estimation using an 
electrochemical model-based extended Kalman filter,” ASME Journal 

of Dynamic Systems, Measurement, and Control, vol. 132, no. 6, pp. 

061302, 2010. 
[18] S. J. Moura, N. A. Chaturvedi, and M. Krstic, “PDE estimation 

techniques for advanced battery management systems—Part I: SOC 

estimation,” In 2012 American Control Conference (ACC), pp. 559-
565, 2012. 

[19] S. Dey, B. Ayalew, and P. Pisu, “Nonlinear Robust Observers for 

State-of-Charge Estimation of Lithium-Ion Cells Based on a Reduced 
Electrochemical Model,” IEEE Transactions on Control Systems 

Technology, vol. 23, no. 5, pp. 1935-1942, 2015. 

[20] S. Dey, B. Ayalew, and P. Pisu, “Nonlinear Adaptive Observer Design 
for a Lithium-Ion Battery Cell Based on Coupled Electrochemical-

Thermal Model,” ASME Journal of Dynamic Systems, Measurement, 

and Control, vol. 137, no. 11, pp. 111005, 2015. 
[21] K. A. Smith, C. D. Rahn, and C. Wang, “Model-based electrochemical 

estimation and constraint management for pulse operation of lithium 

ion batteries,” IEEE Transactions on Control Systems 
Technology, vol. 18, no. 3, pp.  654-663, 2010. 

[22] D. S. Bernstein. Matrix mathematics: theory, facts, and formulas. 

Princeton University Press, 2009. 
[23] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and 

cooperation in networked multi-agent systems,” In Proceedings of the 

IEEE, vol. 95, no.1, pp. 215-233, 2007. 
 

1672


